Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.054
Filtrar
1.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565927

RESUMO

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Assuntos
Derivados de Alilbenzenos , Anisóis , Antioxidantes , Transtorno Depressivo Maior , Humanos , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Nitritos/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Privação Materna , Solução Salina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Estresse Oxidativo , Hipocampo/metabolismo , Modelos Animais de Doenças , Comportamento Animal
2.
Braz J Biol ; 84: e276323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597517

RESUMO

Nitrogen compounds, particularly ammonium, nitrite and nitrate, are a major problem in shrimp production systems. These compounds can accumulate in the aquatic environment and reach harmful or even lethal levels. Thus, monitoring the levels of nitrogenous compounds such as ammonia and studying their effects on the animals are essential. One tool used for this purpose is acute toxicity testing based on the evaluation of LC50 values. Furthermore, tools that can help improve the performance of aquatic organisms in culture are needed. The present study aimed to evaluate the effect of salinity on the toxicity of total ammonia to postlarvae of the freshwater prawn Macrobrachium rosenbergii. For this purpose, acute toxicity testing (LC50-96h) was performed using 540 postlarvae with a mean weight of 0.13 g and a mean total length of 2.47 cm, divided into 54 experimental units of two liters each. A completely randomized design in a 3×6 factorial scheme was used, combining three salinities (0, 5, and 10 g.L-1) and six total ammonia concentrations (0, 8, 16, 32, 64, and 128 mg.L-1), with three replicates per combination. The LC50 values for M. rosenbergii postlarvae at 24, 48, 72, and 96 h and their respective confidence intervals (95%) were estimated using the trimmed Spearman-Karber method. The results showed that salinities of 5 or 10 g.L-1 did not reduce the acute toxicity of total ammonia.


Assuntos
Amônia , Palaemonidae , Animais , Amônia/toxicidade , Salinidade , Nitritos , Nitratos
3.
J Phys Chem Lett ; 15(14): 3900-3906, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564363

RESUMO

Nanopores with two-dimensional materials have various advantages in sensing, but the fast translocation of molecules hinders their scale-up applications. In this work, we investigate the influence of -F, -O, and -OH surface terminations on the translocation of peptides through MXene nanopores. We find that the longest dwell time always occurs when peptides pass through the Ti3C2O2 nanopores. This elongated dwell time is induced by the strongest interaction between peptides and the Ti3C2O2 membrane, in which the van der Waals interactions dominate. Compared to the other two MXene nanopores, the braking effect is indicated during the whole translocation process, which evidence the advantage of Ti3C2O2 in nanopore sensing. Our work demonstrates that membrane surface chemistry has a great influence on the translocation of peptides, which can be introduced in the design of nanopores for a better performance.


Assuntos
Nanoporos , Nitritos , Elementos de Transição , Peptídeos
4.
Mikrochim Acta ; 191(5): 259, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605266

RESUMO

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is  0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nitritos , Elementos de Transição , Humanos , Ouro/química , Nanopartículas Metálicas/química , Hidrogéis , Titânio/química , DNA/química
5.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
6.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38570313

RESUMO

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Assuntos
Canais Iônicos , Metais , Nitritos , Elementos de Transição , Íons , Cátions Bivalentes , Membranas Artificiais , Concentração de Íons de Hidrogênio
7.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
8.
Commun Biol ; 7(1): 449, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605091

RESUMO

Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylum Candidatus Nitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments. Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. Counting Ca. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.


Assuntos
Ecossistema , Nitritos , Bactérias/genética , Oxirredução , Sedimentos Geológicos/microbiologia
9.
Chemosphere ; 355: 141838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561159

RESUMO

MXene is recognized as a promising catalyst for versatile applications due to its abundant metal sites, physicochemical properties, and structural formation. This comprehensive review offers an in-depth analysis of the incorporation of carbon into MXene, resulting in the formation of MXene-carbon-based composites (MCCs). Pristine MXene exhibits numerous outstanding characteristics, such as its atomically thin 2D structure, hydrophilic surface nature, metallic electrical conductivity, and substantial specific surface area. The introduction of carbon guides the assembly of MCCs through electrostatic self-assembly, pairing positively charged carbon with negatively charged MXene. These interactions result in increased interlayer spacing, reduced ion/electron transport distances, and enhanced surface hydrophilicity. Subsequent sections delve into the synthesis methods for MCCs, focusing on MXene integrated with various carbon structures, including 0D, 1D, 2D, and 3D carbon. Comprehensive discussions explore the distinctive properties of MCCs and the unique advantages they offer in each application domain, emphasizing the contributions and advancements they bring to specific fields. Furthermore, this comprehensive review addresses the challenges encountered by MCCs across different applications. Through these analyses, the review promotes a deeper understanding of exceptional characteristics and potential applications of MCCs. Insights derived from this review can serve as guidance for future research and development efforts, promoting the widespread utilization of MCCs across a broad spectrum of disciplines and spurring future innovations.


Assuntos
Carbono , Elétrons , Nitritos , Elementos de Transição , Transporte de Elétrons , Condutividade Elétrica
10.
Sci Adv ; 10(15): eadl3262, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598619

RESUMO

Contact lenses (CLs) are prone to adhesion and invasion by pollutants and pathogenic bacteria, leading to infection and inflammatory diseases. However, the functionalization of CL (biological functions such as anti-fouling, antibacterial, and anti-inflammatory) and maintaining its transparency still face great challenges. In this work, as a member of the MXenes family, vanadium carbide (V2C) is modified onto CL via a water transfer printing method after the formation of a tightly arranged uniform film at the water surface under the action of the Marangoni effect. The coating interface is stable owing to the electrostatic forces. The V2C-modified CL (V2C@CL) maintains optical clarity while providing good biocompatibility, strong antioxidant properties, and anti-inflammatory activities. In vitro antibacterial experiments indicate that V2C@CL shows excellent performance in bacterial anti-adhesion, sterilization, and anti-biofilm formation. Last, V2C@CL displays notable advantages of bacteria elimination and inflammation removal in infectious keratitis treatment.


Assuntos
Infecções Bacterianas , Lentes de Contato , Humanos , Antibacterianos/farmacologia , Anti-Inflamatórios , Bactérias , Lentes de Contato/microbiologia , Inflamação , Nitritos , Elementos de Transição , Água , Impressão
11.
Anal Chim Acta ; 1299: 342417, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499414

RESUMO

BACKGROUND: Nitrite has been involved in many food processing techniques and its excessive consumption is closely related to the development of different diseases. Therefore, highly sensitive detection of nitrite is significant to ensure food safety. RESULT: This study presents a simple and novel strategy for the highly sensitive detection of nitrite in food using paper-based analytical devices (PADs). In this proposed strategy, the nitrite present in the sample undergoes efficient diazotization when initially mixed with sulfanilamide solution before reacting with N-(1-naphthyl) ethylenediamine dihydrochloride (NED) coated on the detection region of the PAD, leading to the maximum production of colored azo compounds. Specifically, within the concentration range of 0.1-20 mg/L, the LOD and LOQ for the nitrite assay using the premixing strategy are determined as 0.053 mg/L and 0.18 mg/L, respectively which significantly surpass the corresponding values of 0.18 mg/L (LOD) and 0.61 mg/L (LOQ) achieved with the regular Griess reagent analysis. SIGNIFICANCE: The study highlights the critical importance of the premixing strategy in nitrite detection. Under optimized conditions, the strategy demonstrates an excellent limit of detection (LOD) and limit of quantification (LOQ) for nitrite detection in eight different meat samples. In addition to its high precision, the strategy is applicable in the field of nitrite analysis. This strategy could facilitate rapid and cost-effective nitrite analysis in real food samples, ensuring food safety and quality analysis.


Assuntos
Compostos Azo , Nitritos , Nitritos/análise , Limite de Detecção , Sulfanilamida
12.
Environ Sci Technol ; 58(10): 4792-4801, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427382

RESUMO

N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5-152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (<-19 kcal mol-1) and relatively low activation energies (<18 kcal mol-1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/química , Nitrosação , Aminas , Carcinógenos , Nitritos/química
13.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542837

RESUMO

Nonsymbiotic phytoglobins (nsHbs) are a diverse superfamily of hemoproteins grouped into three different classes (1, 2, and 3) based on their sequences. Class 1 Hb are expressed under hypoxia, osmotic stress, and/or nitric oxide exposure, while class 2 Hb are induced by cold stress and cytokinins. Both are mainly six-coordinated. The deoxygenated forms of the class 1 and 2 nsHbs from A. thaliana (AtHb1 and AtHb2) are able to reduce nitrite to nitric oxide via a mechanism analogous to other known globins. NsHbs provide a viable pH-dependent pathway for NO generation during severe hypoxia via nitrite reductase-like activity with higher rate constants compared to mammalian globins. These high kinetic parameters, along with the relatively high concentrations of nitrite present during hypoxia, suggest that plant hemoglobins could indeed serve as anaerobic nitrite reductases in vivo. The third class of nsHb, also known as truncated hemoglobins, have a compact 2/2 structure and are pentacoordinated, and their exact physiological role remains mostly unknown. To date, no reports are available on the nitrite reductase activity of the truncated AtHb3. In the present work, three representative nsHbs of the plant model Arabidopsis thaliana are presented, and their nitrite reductase-like activity and involvement in nitrosative stress is discussed. The reaction kinetics and mechanism of nitrite reduction by nsHbs (deoxy and oxy form) at different pHs were studied by means of UV-Vis spectrophotometry, along with EPR spectroscopy. The reduction of nitrite requires an electron supply, and it is favored in acidic conditions. This reaction is critically affected by molecular oxygen, since oxyAtHb will catalyze nitric oxide deoxygenation. The process displays unique autocatalytic kinetics with metAtHb and nitrate as end-products for AtHb1 and AtHb2 but not for the truncated one, in contrast with mammalian globins.


Assuntos
Arabidopsis , Nitritos , Animais , Nitritos/química , Óxido Nítrico/metabolismo , Hemoglobinas/química , Nitrito Redutases/química , Hipóxia , Arabidopsis/metabolismo , Oxirredução , Mamíferos/metabolismo
14.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553197

RESUMO

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Assuntos
Nanopartículas , Nitritos , Selênio , Elementos de Transição , Antibacterianos/farmacologia , Celulose/farmacologia , Condutividade Elétrica , Hidrogéis/farmacologia
15.
Food Chem ; 446: 138770, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428079

RESUMO

Herein, we made 3D MXene-AuNPs by in situ growth of gold nanoparticles (AuNPs) on the surface of MXene by chemical reduction method, and then introduced three sulfhydryl (-SH) compounds as functionalized modifiers attached to the AuNPs to form a highly selective composite material for the detection of Pb2+, Cu2+, and Hg2+, respectively. The doping of AuNPs changes the microstructure of 2D MXene and generates more active sites. On a sensing platform based on ITO array electrodes, the detection system was optimised with sensitivities up to 1.157, 0.846 and 0.799 µA·µg-1Lcm-2 (Pb2+, Cu2+, and Hg2+). The selectivity of MXene@AuNPs was effectively improved by sulfhydryl group modification. In the range of 1-1300 µg L-1, the detection limits of three ions were 0.07, 0.13 and 0.21 µg L-1. In addition, this method can efficiently and accurately detect heavy metal ions in four cereal samples with consistent results with inductively coupled plasma mass spectrometry.


Assuntos
Mercúrio , Nanopartículas Metálicas , Nitritos , Elementos de Transição , Ouro/química , Chumbo , Grão Comestível/química , Nanopartículas Metálicas/química , Mercúrio/análise , Compostos de Sulfidrila/química , Íons/química
16.
ACS Biomater Sci Eng ; 10(4): 1892-1909, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38466909

RESUMO

MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.


Assuntos
Regeneração Óssea , Osso e Ossos , Elementos de Transição , Engenharia , Nitritos
17.
Environ Geochem Health ; 46(4): 131, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483704

RESUMO

Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Solanum tuberosum , Solo , Nitratos , Nitritos , Irã (Geográfico) , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental
18.
Int J Biol Macromol ; 264(Pt 2): 130625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458295

RESUMO

Electrical stimulation modulates cell behavior and influences bacterial activity, so highly conductive, antimicrobial hydrogels are suitable for promoting wound healing. In this study, highly conductive and antimicrobial Ti3C2Tx (MXene) hydrogels composed of chitosan and poly(vinyl alcohol) and AgCu- H2PYDC MOF were developed. In PVACS/MOF/MXene (PCMM) hydrogels, the MXene layer acts as an electrical conductor. The electrical conductivity is 0.61 ± 0.01 S·cm-1. PCMM hydrogels modulate cell behavior and provide ES antimicrobial capacity under ES at 1 V. The metal ions of MOF form coordination with chitosan molecules and increase the cross-linking density between chitosan molecules, thus improving the mechanical properties of the hydrogel (tensile strength 0.088 ± 0.04 MPa, elongation at break 233 ± 11 %). The PCMM gels had good biocompatibility. The PCMM hydrogels achieved 100 % antibacterial activity against E. coli and S. aureus for 12 h. 1 V electrical stimulation of PCMM hydrogel accelerated the wound healing process in mice by promoting cell migration and neovascularization, achieving 97 ± 0.4 % wound healing on day 14. The hydrogel dressing PCMM-0.1 with MOF addition of 0.1 % had the best wound healing promoting effect and which is a promising dressing for promoting wound healing and is a therapeutic strategy worth developing.


Assuntos
Quitosana , Nitritos , Elementos de Transição , Camundongos , Animais , Quitosana/farmacologia , Hidrogéis/farmacologia , Escherichia coli , Staphylococcus aureus , Cicatrização , Antibacterianos/farmacologia
19.
Int J Biol Macromol ; 264(Pt 2): 130821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484816

RESUMO

Cellulose nanofibers (CNF) based films are promising packaging materials, but the lack of special functions (especially UV-shielding property) usually restrict their further applications. In this work, MXene was incorporated into the CNF film by a direct solvent volatilization induced film forming method to study its UV-shielding property for the first time, which avoided the using of a vacuum filtration equipment. The composite films containing glycerin could be folded repeatedly without breaking, showing good flexibility. The structure and properties of MXene/CNF composite films (CMF) were characterized systematically. The results showed that MXene distributed uniformly in the CNF film matrix and there was strong hydrogen bonding interaction between CNF and MXene. The tensile strength and Young's modulus of the composite films could reach 117.5 MPa and 2.23 GPa, which was 54.1 % and 59.2 % higher than those of pure CNF film, respectively. With the increase of MXene content, both the UVA and UVB shielding percentages increased significantly from 17.2 % and 25.5 % to 100.0 %, showing excellent UV-shielding property. Moreover, CMF exhibited a low oxygen permeability (OP) value of 0.39 cc µm d-1 m-2 kPa-1, a low water vapor permeability (WVP) value of 5.13 × 10-11 g-1s-1Pa-1 and a high antibacterial rate against E. coli (94.1 % at 24 h), showing potential application in the packaging field.


Assuntos
Celulose , Nanofibras , Nitritos , Elementos de Transição , Celulose/química , Nanofibras/química , Escherichia coli , Embalagem de Produtos
20.
Food Chem ; 447: 138987, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518621

RESUMO

Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano­palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 µM and the limit of detection was 0.0033 µM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.


Assuntos
Bismuto , Nitritos , Paládio , Sulfetos , Microesferas , Smartphone , Reprodutibilidade dos Testes , Eletrodos , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...